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Dynamical Bifurcations and Competing Instabilities in 
Landau and Landau-Ginzburg Theory 
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We discuss the case of a Landau theory for systems with competing instabilities 
and the behavior of its solutions at the phase transition. We show that when one 
takes into account the finite speed of variation of control parameters in any real 
experiment, the jumping effects characteristic of dynamical bifurcation theory 
lead to an enhancement of the critical mode; we then apply our discussion to the 
Landan-Ginzburg equation. We corroborate our discussion by the results of 
numerical simulations. 

1. INTRODUCTION 

Dynamical bifurcations were first studied by Neishtadt (1988), who 
showed how these differ from the standard bifurcation picture; the interest 
in dynamical bifurcations then diffused among mathematicians and, to a 
somewhat lesser extent, physicists; a panorama of progress in the theory 
and applications is offered by the conference proceedings and the bibliogra- 
phy collected in Benoit (1991). 

Here we discuss dynamical bifurcations in the framework (and the 
terminology) of the Landau theory of phase transitions, ineluding the 
Ginzburg-Landau equation describing the case of a local order parameter 
(Landau and Lifshitz, 1958). In particular, we are interested in the situa- 
tion of competing instabilities, in which case the effects related to dynamical 
bifurcation can be expected to play a significant role in enhancing the most 
unstable mode or, as we will call it, the critical mode. We substantiate the 
heuristic reasoning leading to such an expectation by means of numerical 
computations, deafly showing the discussed effect. 
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This phenomenon is of particular interest in the framework of a 
Landau-Ginzburg-type equation; indeed, in physical problems described 
by these, one observes the formation of regular patterns corresponding to 
critical modes, which are not fully understood by the theory. The main 
difficulty in analyzing these transitions in terms of bifurcation theory 
(Guckenheimer and Holmes, 1993) lies indeed in the presence of a contin- 
uous spectrum (given in physical terms by a dispersion relation) (CoUet 
and Erkmann, 1990), so that the bifurcation theorems (Guckenheimer and 
Holmes, 1993), which allow one to reduce the dynamics to unstable modes 
and ensure the other modes are slaved to these, do not apply here. 
Nevertheless, consideration of concrete cases shows that--although we 
have necessarily a whole interval of unstable frequencies, i.e., modes, once 
the zero solution has lost stability--the observed dynamics is well de- 
scribed in terms of the mode first becoming unstable, i.e., the critical mode 
alone. Notice that in nondegenerate situations, the critical mode will also 
be the most unstable one, at least for values of the control parameter near 
the critical one. 

We will discuss how the effect of dynamical bifurcations enhancing the 
critical mode can be used to understand the above-mentioned behavior, 
and again will substantiate our discussion by numerical simulations. 

As already mentioned, our discussion will be entirely in terms of 
Landau and Landau-Ginzburg theory; the reader desiring a greater math- 
ematical generality and sophistication in the general discussion of dynami- 
cal bifurcations is referred to Benoit (1991). 

2. DYNAMICAL BIFURCATIONS 

Let us briefly illustrate the main point of dynamical bifurcations, in 
the frame and with the language of Landau theory; a more complete 
introduction is provided by Lobry (1991). 

Let us consider the case of a scalar order parameter x ~ R; we have 
then to deal with a potential V(x) and, up to rescalings, 

.~ = -VV(x) - 2 x - x  3 (1) 

so that for 2 < 0 we have the stable solution x = 0, and for 2 > 0 there are 
two stable solutions x = x_+ = +x/~. The prediction (of standard bifurca- 
tion theory) is therefore that, if we gradually increase 2 starting from a 
negative value, we observe x = 0 for 2 < 0, and x2= 2 for ~ > 0. 

Nevertheless, this can happen in no real experiment in which we 
observe the evolution of x as 2 is varied. Indeed, although for 2 > 0 the 
limit of x(t) under (1) is x_+, this limit is reached only in an infinite time, 
and in a real experiment we only have finite time, so that at most we can 
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hope to observe x(2) = x•  It was remarked by Neishtadt that the situation 
is actually much worse: indeed, for 2 -~ 0, the dynamics of  (1) around x = 0 
undergoes a crit ical s lowing down (indeed linear terms vanish), and this 
implies that the equilibrium solutions x• do not even approximate the 
effective solutions over any finite time, no matter how long. 

A more realistic description of an experimental situation in which 2 is 
varied very slowly but still with finite speed would consider, instead of  (1), 
the system 

{~. =~X - x3 ~-~-~ (2) 

Now, if at t = 0 we have 2 = 0, x = Xo = 0, since the x equation reads now 

Yc = e tx  - x 3 (3) 

then taking the linear approximation for small x, we get 

x( t )  ~- e"t2/Exo; x(2) = ea2/(:")xo (4) 

This means that x( t )  will remain essentially constant up to a certain time t* 
[equivalently, x(2) up to a certain value 2" of  the control parameter], after 
which it undergoes an explosive behavior. Obviously, once x begins to 
grow, the linear approximation is no longer valid, and we enter the 
nonlinear regime; the saturation of  the nonlinearity ensures that we do not 
actually have an explosion, but a sudden jump from the regime described 
by (4) to a regime of saturated nonlinearity, in which x = x_+. We have 
therefore 

x ( t ) ~ - X o ,  t < t * ;  x ( t ) = x •  t > t *  (5') 

x(2) --- x0, 2 < ;t*; x(2) = x • (;t), ;t > ,~* (5") 

Clearly, this is an idealization, in that the transition between the two 
regimes is not at a definite value of t, 4, but over a (narrow) jumping 
interval around t*, 2*. 

The above qualitative discussion is easily checked to be right by 
numerically integrating (2) and plotting x(A); see Fig. 1. 

A rough estimate for 2 is given by asking that 121- ( d / d t ) l x •  (4)1, i.e., 

2etx  ~-. (6) 

Since in the linear regime (4) x ---Xo, this gives 

~(1y,3. ~(,2y,3 
' ( 7 )  
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Fig. 1, Dynamical bifurcation versus standard one. (a) The x(~) resulting from numerical 
integration of (2) (solid line), to br compared with the functions xb(2 ) = ~f2 predicted by 
standard bifurcation theory (dashed line). (b) The ratio p(A) = x ( A ) / x ~ ( Z ) ,  showing the abrupt 
jump from the linear regime to the saturated nonlinear one. We used s = 0.01, time step 
dt  = 0.01, and initial data A o = 0, x o = 0.001. 
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Finally, we remark that (2) is invariant under the re.scaling (a a real number) 

X--~otx; 2--~ 0t22; t--~O~-2t; ~_~4~ (8) 

The scaling property ensures that Fig. 1 describes the general behavior of  
(2), and is not only valid for the e and Xo used in the concrete numerical 
integration. It also shows that if n is reduced, the jumping will take place 
at the smallest values of  2, i.e., that in the limit 8 - , 0  + we recover the 
standard bifurcation picture. 

3. LANDAU T H E O R Y  WITH COMPETING INSTABILITIES 

We would now like to consider how the behavior discussed in the 
previous section affects the situation in which we have competing instabili- 
ties. We consider the case of  two instabilities, arising at nearly degenerate 
values of  the control parameter, 21 and 22 = 21 + 62; the order parameter 
will have two components x, y corresponding to the amplitudes of  these. In 
other words, we have 

I 
X = 2X -- (X 2 + y2)x 

= (2 - 62)y - (x 2 + y2)y (9) 

Notice that the scaling (8) does leave (9) invariant, provided 62 scales 
in the same way as 2. 

Let us first consider e = 0 and 2 >> 62, with small initial datum 
(Xo, Yo) - (0, 0). It is clear that we will first have a regime in which x(t), y(t) 
grow at nearly the same rate; when r 2 - x2(t) + y2(/) becomes of  order 2 
the dynamics enters a slow regime drifting between the circles r 2--- 2 - -62  
and r E = 2 until reaching the minima of the effective potential (x, y)+ = 
(+_v/2, 0). We have therefore that r and 0 (polar coordinates for x, y) 
evolve on different time scales; this behavior is concretely shown in Fig. 2. 

Let us now consider the dynamical bifurcation case, e ~ 0. The discus- 
sion of  the previous section shows that (for small initial datum) we expect 
jumplike behavior for x(t) and y(t); but due to the term 62, the jump from 
the linear to the saturated nonlinear regime would now take place at 
different values of  2 for x and y. Taking 2o = 0, from (7) we have 

~ ( g 2  ~!/3 .~ ,~2~1 /3  

2(*) - ~2x~,] ; 2~y) - \~yo2 ) + 62 (10) 

Notice that different behaviors are possible: 
(i) If  2~x) < 2~y), the system will jump directly from the linear regime 

(x(2),__y(2)) ~-(xo, Yo) to equilibrium solutions (x, y) "--(x• 0), with x• = 
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Fig. 2. Numerical integration of  (9) for e = 0. Here we plot the values of  r(t) (solid line) and 
y(O/x(t) (dashed line). We used 2 -  1, t~2 =0.01, time step dt =0.01, and initial data 
Xo =Y0 = 0.001. 

(ii) If  2~x)~-2~y), the system jumps to a state in which r 2 - 2, 
y/x~-yo/Xo, and then slowly readjusts to reach (x, y) = (x+ , O); this 
differs from the ~ = 0 case in that the r expansion is jumplike. 

(iii) If  2<*) > 2~'y), the system jumps first to (x ,y)  ~ ( 0 ,  __+x/~) and 
then, with a slow dynamics, reaches (x, y) = (x•  0). 

If  the initial data are of  the kind xo -~ Y0, we are in case (i), so that 
the noncritical mode y is suppressed by the jumping behavior. 

Pictorially, the available energy is not given gradually to the system, 
but absorbed in a big bunch (it can then be redistributed between modes 
on a much slower time scale); in the transition from the linear to the 
nonlinear regime, the mode that starts first to absorb energy takes all 
of  it. 

It should be stressed that in (i)-(i i i)  above, one should understand 
that 2<*)NAVy) actually means that their difference is smaller than the 
width of  the jumping region; a similar criterion applies for the order 
relations in (i) and (iii). 

An explicit numerical integration of  (9) is shown in Fig. 3; notice 
that by the scaling properties of  (9) this illustrates the general case. 
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Fig. 3. Numerical integration of (9) for e ~ 0 and different initial data. We plot the values 
of x(2) (solid line) and y(2) (dashed line). We used ~ = 0.01, 62 = 0.01, 20 = 0, and time step 
dt = 0.01. (a-c) Cases (i)-(iii), respectively, discussed in Section 4. The initial data used were 
(a) Xo = 0.01, yo = 0.001, (b) xo=y  o = 0.001, and (c) xo = 0.001, yo =0.01. 

4. L A N D A U - G I N Z B U R G  E Q U A T I O N  A N D  D Y N A M I C A L  

B I F U R C A T I O N S  

Let  us now discuss how the p rev ious  cons idera t ions  can  be o f  use in 
the s tudy  o f  b i fu rca t ions  for  the  L a n d a u - G i n z b u r g  ( G L ) e q u a t i o n  (Col le t  

and  Eckmann ,  1990; Newel l  et aL, 1993; Eckhaus ,  1992; Van  Har ten ,  

1991) 

u, = (4 + A)u - lul=u (I1) 

where  A is the  Laplac ian .  S imi la r  cons ide ra t ion  ac tua l ly  a p p l y  to  any  
equa t ion  o f  the fo rm 

u, = Z(~,  A)u - lul2u (12) 

wi th  L a l inear  ope ra to r ,  such as, e.g., the S w i f t - H o h e n b e r g  equa t ion  
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(Collet and Eckmann, 1990), obtained for L(2, A ) = [ 2 - ( 1  +A)2]. We 
will stick to the GL case, both for concreteness and for its physical 
(Collet and Eckmann, 1990; Newell et al., 1993) and mathematical (Eck- 
halls, 1992; van Harten, 1991) interest; it will be clear how to generalize 
our discussion to (12). We will moreover consider u ~ R, x e R, but 
nothing essential would change if we considered R m, R n instead. 

By Fourier transforming u(x, t) so that with standard notation 

t) = fk (t)Ik) = f f k  (t)e ~x dk (13) U(X,  

one finds for one-dimensional GL equation (11) 

fk = [tr(2, k) - -  ~ f J 2 ] f  k = ( 2  - -  k 2 ) f k  - -  ~ f l 2 f k  (14) 

where obviously Ill2= S if[2 dk; notice that the critical mode k = 0  will 
remain the most unstable one. Obviously, if we impose boundary condi- 
tions, e.g., u( +a ,  t ) =  0, only a discrete infinite set of Fourier modes will 
be present. 

I f  we start from small u0 ~ 0 and negative 2, gradually increasing the 
latter, at 2 = k 2 all the frequencies - k 0  < k-< ko should be excited. On 
the basis of linear analysis, for small Ill 2 we would have 

fk = tr(2, k)f~ =- (2 - kE)fk (15) 

and considerations similar to those presented in the previous section for 
e = 0 would apply. 

In the dynamical bifurcations setting, we should supplement (1 l ) a n d  
(14) with ;~ =8, e > 0 ,  and the considerations of the previous section 
would apply as well. In particular, if the energy is smoothly distributed 
among modes- -so  that in a small interval - k o  < k -< k0 it is essentially 
constant--we are in case (i) of  the previous section. 

Clearly, in the continuous spectrum case we should speak more 
properly of packets of frequencies rather than of single frequencies, so 
that the final outcome of our discussion in the GL case is that the 
(jumping) effects of dynamical bifurcation, for energy initially smoothly 
distributed, enhances the critical mode and leads to a direct transi- 
tion to a regime in which only frequencies k ~ 0 have nonvanishing 
amplitudes. 

This heuristic discussion requires a numerical check; we have indeed 
considered a discretized version of (14) in which only modes k = nk o are 
present, n = 0, + 1 . . . .  , ___ 16. The results of numerical integration of this 
are displayed in Fig. 4; they confirm and substantiate our discussion. 
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Fig. 4. Numerical integration of (14). We keep modes k = n k o ,  with ko=0.01 and 
n = O ,  _+1 . . . . .  +16. We chose e=0.01, 6A=0.01, ~ = 0 ;  as initial data we gave 
fk(0) = 0.001. The solid line represents the amplitude fo of the critical mode k = 0 as a 
function of A; the dotted line represents the average amplitude of the other modes, 
F = [~_,k # Ofk]/32. 

6. CONCLUSIONS 

We have shown that, in the presence of competing instabilities with 
nearly degenerate instability thresholds and initial energies, taking into 
account the finite speed of variation of the control parameter leads to an 
enhancement of the critical modes, i.e., of  the modes which first become 
unstable and remain, at least for a small interval of values of the control 
parameter, the most unstable ones. This enhancement is due to the essen- 
tially discontinuous and "jumplike" behavior of the mode amplitude versus 
the control parameter, characteristic of dynamical bifurcations. 

We have shown how this affects some simple models, and more 
important, the GL equation, by means of numerical simulations which 
confirmed and substantiated our discussion. 
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